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A B S T R A C T

Bistable systems have been of great research interest due to their rich dynamics arising from
a variety of excitations. This study presents an investigation into the nonlinear dynamics
of a continuous bistable beam subjected to a form of vibro-impact forcing. A fixed–fixed
Euler–Bernoulli beam, precompressed to achieve bistability, is considered, while a shaker
with sinusoidally-prescribed velocity applies transverse impact forcing. By varying excitation
parameters such as frequency and amplitude, the system response can be tuned. The study
begins by employing a Galerkin expansion to the continuous equation of motion, using the
buckling modes to remove buckling level dependence and ensure equilibrium symmetry. A
Hertzian contact law is chosen to model the collision between the shaker and the buckled
beam. The rich dynamics of this system are then explored through numerical and experimental
analyses. The focus lies on investigating the emergence of intrawell and interwell dynamics
that arise with varying excitation frequency, amplitude, and location. Moreover, we evaluate
the significance of including higher-order modes in the modeling of bistable beam dynamics,
particularly near snapthrough. This research provides valuable insights into the behavior of
continuous bistable structures under vibro-impact forcing, contributing to the understanding
and control of such systems in engineering applications.

. Introduction

Bistable systems, which have two stable equilibria, allow for the design of unique control and memory processes [1,2]. These
ystems can be found in electrical, mechanical, optical, and even biochemical domains [3–6]. Their multi-stable nature allows for
he design of flip-flop circuits, relaxation oscillators [7], Schmitt triggers [8], energy harvesters with increased bandwidth [9,10],
nd even controllable hysteresis [8,11]. Mechanical bistabilities in particular have garnered interest recently in soft robotics, where
hey are used for energy absorption, sensing, logical computation, and building metamaterials [12].

Mechanical systems can be discrete, and even single degree of freedom devices can be bistable [13–15]. However, more general
ontinuous systems allow more complex realistic mechanisms to be analyzed. This is particularly useful when dealing with complex
eometries and some types of excitation, such as impact, which require the consideration of higher order modes [16]. Complex
istable mechanisms under external excitation often occur within the energy harvesting literature [17–19]. However, these structures
re often simplified to few degrees of freedom for convenience [20]. In addition, base excitation is typical for these applications. In
he sensing literature, more complex excitation may be present, including contact, but the analyses are often limited to quasi-static
ime scales [21].
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Fig. 1. A: Experimental Setup with high speed camera and clamped–clamped buckled beam. A shaker with a rounded tip provides excitation. A laser doppler
vibrometer (not pictured) records shaker velocity. B: An example frame from the high speed camera. Shaker and beam displacement are extracted from these
frames. The sticker near the tip of the shaker aides this computational object tracking.

Another common form of excitation for mechanical systems is impact. Impact dynamics is a vast area of research spanning
hundreds of years and numerous applications across physics and engineering such as the modeling of ideal gases and robotics.
From the discrete discontinuities proposed by Newton [22] to the contact-impact law proposed by Hertz [23], a number of models
have been proposed to describe collisions between bodies as a function of velocity [24], geometry, and other parameters. These
impacts create discontinuities in the response of the bodies, which arise in the field of nonsmooth mechanics [25,26]. Especially for
continuous systems, discontinuities may create rich dynamics [27] as grazing bifurcations emerge. Further, since each set of impact
conditions may not be known a priori, limited analysis tools are available. However, some systems may benefit from piecewise
linear analysis [28] and collocation methods [29], which can significantly ease the computational burden. Even when contact is not
intermittent, nonlinear contact laws give rise to distortion of the response waveform [30,31].

The rich impact dynamics may also be applied to fundamentally nonlinear (e.g. bistable) systems, where the limitations in
analytical techniques becomes even more pronounced. Nevertheless, impact in bistable systems has received increasing attention
for applications in energy harvesting [32,33], load protection [34], and metamaterials [35]. The snapthrough event itself has also
been shown to generate an impulse-like excitation, exciting higher-order modes [36].

Lacking from literature, however, are fundamental investigations into a single continuous bistable system excited solely via
impact. These investigations would facilitate intimate understanding of the underlying dynamics of a nonlinear system excited via
contact, which can be generalized to many other systems.

While our previous work [13], has focused on the rich dynamics arising in a SDOF bistable system excited via impact, we
now extend this investigation by considering a continuous bistable structure under vibro-impact forcing. We present numerical and
experimental representations of a fixed–fixed Euler–Bernoulli beam which is precompressed to achieve bistability and provide a
shaker with sinusoidally-prescribed velocity for transverse impact forcing. The nonlinear nature of the system allows for tuning
of the rich system responses by varying excitation parameters. In this case, by changing the excitation frequency, amplitude, and
location, different responses are possible, including intrawell and interwell responses. Comparison to a SDOF system highlights
unique characteristics of these tunable responses in a 32 mode approximation of a continuous buckled beam.

2. Experimental methods

Experimentally, the buckled beam is represented as a slender beam constructed of mild steel and fixed in a custom compression
fixture seen in Fig. 1A. First, the beam is fixed at each end by the even clamping of 4 bolts torqued to 15 N-m each. This fixed–fixed
beam is then precompressed and buckled via a leadscrew, creating a bistable energy profile with equi-level energy minima. This
symmetry was validated by testing the natural frequency of the first dynamic mode about both equilibria; natural frequencies of
81.3 Hz and 80.5 Hz indicate good symmetry. A B&K Type 4809 shaker with a custom aluminum and polylactic acid stinger rod
placed near the center of the span provides transverse impact excitation at frequencies between 20 Hz and 300 Hz for 200 cycles.
A Polytec PDV-100 laser doppler vibrometer records shaker velocity within 1.7 μm∕s. A signal to noise ratio of >15 dB for all
experiments indicate near-sinusoidal motion. Simultaneously, a 10,000 fps Photron camera records position of the shaker and beam
around the point of excitation with the help of an external LED light. The camera records the image with a pixel size of 12 μm. Each
frame (e.g. Fig. 1B) is processed using a custom binarization and object tracking code written in Python using OpenCV [37,38] to
extract the location of the shaker and beam simultaneously. After each experiment, the beam and shaker are reset to their initial
static configuration before the next experiment.
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Fig. 2. A schematic of the bistable beam system showing the buckled beam (black) and shaker (red). During interwell motion, the beam moves from the first
stable equilibrium (solid) to the second stable equilibrium (dashed). (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

By varying shaker amplitude and frequency, a variety of responses are observed including intrawell, transient intrawell, and
continuous interwell as described in Section 4. These dynamics have the potential to vary across large ranges of excitation
parameters, which can be experimentally difficult to achieve. Further, key information about modal amplitudes and contact forces
can be challenging to measure experimentally while simultaneously capturing the displacement and contact of two bodies. These
constraints motivate us to develop a computational model of the system.

3. Model description

3.1. Beam model

The model begins with the forced equation of motion [39,40] for the transverse displacement 𝑤̂ of an undamped beam of length
𝐿̂ that undergoes compression under an axial load 𝑃 (Fig. 2), which is given by:

𝜌̂𝑆̂
𝜕2𝑤̂𝑏

𝜕𝑡2
+ 𝐸̂𝐼

𝜕4𝑤̂𝑏

𝜕𝑥̂4
+
[

𝑃 − 𝐸̂𝑆̂
2𝐿̂ ∫

𝐿̂

0

( 𝜕𝑤̂𝑏
𝜕𝑥̂

)2
𝑑𝑥̂

] 𝜕2𝑤̂𝑏

𝜕𝑥̂2
= 𝑓 (𝑡)𝛿(𝑥̂𝑠). (1)

Important system parameters include the beam density 𝜌̂, Young’s modulus 𝐸̂, moment of inertia 𝐼 , and cross-sectional area 𝑆̂
where the ̂ indicates dimensional quantities. 𝑓 (𝑡) is a transverse point force located at 𝑥̂𝑠 which represents the system excitation.
Note that the time-dependence of 𝑓 (𝑡) is implicit; it arises from the time-dependence of the shaker displacement, and will be further
discussed in Section 3.2.

Nayfeh et al. [39] have shown that 𝑃 significantly affects the natural frequencies of the system. 𝑃 can be directly calculated by
measuring the buckling level 𝑏̂, which is defined in Fig. 2. This buckling level, i.e. the apex height of the buckled beam, is given by:

𝑏̂ =

√

4𝐿̂2

𝜋2𝐸̂𝑆̂
(𝑃 − 𝑃𝑐𝑟), (2)

where the first critical buckling load is

𝑃𝑐𝑟 =
4𝜋2𝐸̂𝐼
𝐿̂2

. (3)

The dynamic modes can be used as a basis to project the displacement of the beam from its initial symmetric buckled state as
done by Emam et al. [41]. However, the projection based on dynamic modes results in a bistable system with stable equilibria at
different energy levels. This is because the initial shape of a buckled beam cannot be exactly represented by a truncated sum of
dynamic modes. To avoid this, we use the buckling modes 𝜙̂𝑖(𝑥̂) given by Timoshenko and Gere [42] as an orthogonal basis for our
Galerkin expansion. These modes are given by:

𝜙̂ (𝑥̂) = 𝐴̂ sin(𝑘̂ 𝑥̂) + 𝐵̂ cos(𝑘̂ 𝑥̂) + 𝐶̂ 𝑥̂ + 𝐷̂ , (4)
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where application of the idealized fixed–fixed boundary conditions

𝜙̂(𝑥̂) =
𝜕𝜙̂(𝑥̂)
𝜕𝑥̂

= 0 at 𝑥̂ = 0 and 𝑥̂ = 𝐿̂ (5)

leads to solutions for 𝐴̂𝑖, 𝐵̂𝑖, 𝐶̂𝑖, and 𝐷̂𝑖 by solving the system of equations
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. (6)

We find that 𝑘̂𝑖 satisfies

𝑘̂2𝑖−1 =
2𝑖𝜋
𝐿̂

, or tan(
𝑘̂2𝑖𝐿̂
2

) =
𝑘̂2𝑖𝐿̂
2

, where 𝑖 = 1, 2, 3,… , (7)

for the symmetric (odd) and antisymmetric (even) buckling modes, respectively. For example, the first buckling mode is given by:

𝜙̂1(𝑥̂) = 𝐵̂1

[

1 − cos( 2𝜋𝑥̂
𝐿̂

)
]

. (8)

The modes were normalized using the equation

∫

𝐿̂

𝑥̂=0
𝜙̂′
𝑖(𝑥̂)𝜙̂

′
𝑗 (𝑥̂)𝑑𝑥̂ = 𝛿𝑖𝑗 , (9)

where ′ refers to the derivative with respect to 𝑥̂ and 𝛿𝑖𝑗 the Kronecker delta. This normalization was chosen rather the more
conventional normalization with respect to the mass terms as it allows us to greatly simplify the expression for the nonlinear term
in the system of ODEs.

The solution is projected onto the buckling modes,

𝑤̂𝑏(𝑥̂, 𝑡) =
𝑁
∑

𝑗=1
𝛼𝑗 (𝑡)𝜙̂𝑗 (𝑥̂), (10)

which allows the equation of motion to be reduced to the following system of nonlinear ODEs:
𝑁
∑

𝑗=1
𝑚̂𝑖𝑗 𝛼̈𝑗 + 𝐾̂0

𝑖 𝛼𝑖(𝑡) +
[

𝑁
∑

𝑘=1
𝛼𝑘(𝑡)2

]

𝛾̂𝛼𝑖(𝑡) = 𝑓𝑖(𝑡) for 𝑖=1,2,. . . , 𝑁 (11)

where the modal force 𝑓𝑖(𝑡) for a point force at 𝑥̂𝑠 is given by:

𝑓𝑖(𝑡) = 𝜙̂𝑖(𝑥̂𝑠)𝑓 (𝑡). (12)

The modal mass matrix is given as

𝑚̂𝑖𝑗 = 𝜌̂𝑆̂ ∫

𝐿̂

0
𝜙̂𝑖(𝑥̂)𝜙̂𝑗 (𝑥̂)𝑑𝑥̂ (13)

and the linear stiffness is

𝐾̂0
𝑖 = 𝐸̂𝐼 ∫

𝐿̂

0
𝜙̂′′2
𝑖 (𝑥̂)𝑑𝑥̂ − 𝑃 . (14)

Nonlinear coupling stiffness takes the form

𝛾̂ = 𝐸̂𝑆̂
2𝐿̂

. (15)

Note that due to the selection of buckling modes, the mass matrix 𝑚̂𝑖𝑗 is a symmetric checkerboard-patterned matrix. This
ndicates that this formulation contains linear mass coupling between symmetric modes and between antisymmetric modes, but not
etween symmetric and antisymmetric modes. However, there is nonlinear elastic coupling between symmetric and antisymmetric
odes due to the nonzero 𝛾̂ term.

.2. Excitation model

The shaker is modeled as an intermittently contacting discrete point with the velocity

̇̂𝑤𝑠(𝑡) = 𝑉 𝑏̂𝜔̂1 cos(𝜔̂𝑡) for 𝑡 ≥ 0, (16)

here 𝑉 is the non-dimensional velocity amplitude. The shaker is initially in contact with the beam i.e. 𝑤̂𝑠(0) = 𝑤̂𝑏(𝑥̂𝑠, 0).
A common contact model which has been successfully used in related work [13] is the Newtonian coefficient of restitution (COR)

odel, which relates the relative velocity of the shaker and beam before and after impact. For SDOF approximations, this relation
4
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Fig. 3. A: An example simulated waveform of the beam (black) and shaker (red). B: Shallow penetration where a Hertzian contact law is applied. C: The
resulting contact force. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

is sufficient to model a wide range of collisions. However, for a multi-DOF system, the instantaneous nature of the COR model
combined with point excitation does not allow for convergence. Further, the instantaneous nature of the impact does not allow time
for waves to propagate in the beam. Thus, a contact model which takes into account the finite duration of contact is required for
proper representation of the continuous beam.

Assuming no plastic deformation and small deformation during contact, the model chosen is a Hertzian contact law. While
originally developed for a sphere impacting an infinite half-space, Hertz-based contact has been successfully applied to approximate
impact in beams for decades (e.g. [43], but also [44–49]). While other contact models may represent the contact mechanics in
greater fidelity (e.g. [50,51]), the impulse-like nature of the Hertzian contact law phenomenologically captures the dynamics of the
system while limiting free parameters. The contact force is then given as:

𝑓 (𝑡) = 𝑓 (𝑑(𝑡)) =

⎧

⎪

⎨

⎪

⎩

𝑘̂𝑐
[

𝑑(𝑡)
]3∕2

, if 𝑑(𝑡) ≥ 0

0, otherwise
(17)

where 𝑑(𝑡) is the penetration depth given by

𝑑(𝑡) = 𝑤̂𝑠(𝑡) − 𝑤̂𝑏(𝑥̂𝑠, 𝑡), (18)

which can be seen in Fig. 3A when the shaker and beam waveforms cross. The penetration depth in panel B then informs the contact
force in panel C. Varying the contact stiffness 𝑘̂𝑐 term allows for fine tuning of the collision model for a wide variety of systems.

An immediate consequence of this contact model is that the force applied to the beam is dependent on the displacement of the
beam at the location of excitation. This creates an additional form of nonlinear modal coupling that occurs only during contact via
the 𝑑 term in Eq. (17).

In both simulation and experiment, the beam initially starts at rest snapped downwards around the stable equilibrium and in
contact with the shaker (i.e. 𝑤̂𝑠(0) = 𝑤̂𝑏(𝑥̂𝑠, 0) = 𝛼1(0)𝜙̂1(𝑥̂) where 𝛼1(0) = − 𝑏̂

𝜙̂1(𝐿̂∕2)
).

For generalization of model results, normalization is conducted such that 𝑤 = 𝑤̂
𝑏̂

, 𝑑 = 𝑑
𝑏̂
, 𝑥𝑠 =

𝑥̂𝑠
𝐿̂

, and 𝜏 refers to the number of
cycles of excitation (𝜏 = 𝑡𝜔̂

2𝜋 ). The normalized excitation frequency is 𝛺 = 𝜔̂
𝜔̂1

, where 𝜔̂1 is the first natural frequency of the beam
around a stable equilibrium. For the selected buckling level, 𝜔̂1 also corresponds to the first symmetric dynamic mode. However,
for higher buckling levels, the first symmetric dynamic mode may be the second mode of the system [39] and this normalization
may no longer be appropriate. For this investigation, simulations with the 32 mode model show 𝜔̂1

2𝜋 ≈ 81.8 Hz , 𝜔̂2
2𝜋 ≈ 159 Hz, and

𝜔̂3
2𝜋 ≈ 380 Hz; the maximum excitation frequency used in the simulations is 𝜔̂𝑚𝑎𝑥

2𝜋 ≈ 325 Hz.

3.3. Parameter selection

The numerical system parameters were selected to represent the slender steel beam used in experiment. A density of 7800 kg/m3

and a Young’s modulus of 200 GPa were used. The beam has a length of 16.1 cm and a rectangular cross-section of thickness ℎ̂
and depth 15 mm. ℎ̂ was adjusted in the model to match the natural frequencies of the experimental beam prior to compression.
While the physical beam thickness measured 0.44 mm, a thickness of 0.4 mm was used in silico to exactly match the first two natural
frequencies of the experimental straight beam (80 Hz and 221 Hz). The buckling level, 𝑏̂, which was measured to be 0.5 mm, was
adjusted to 0.335 mm in the simulations in order to obtain near perfect agreement between model and experiments for the 1st
5
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Fig. 4. Beam (black) and shaker (red) displacement waveforms. A, C, E: Experimental, B, D, F: Simulated at similar parameters. A–B: non-periodic intrawell, C–D:
transient interwell, E–F: transient interwell with multiple snapthroughs. Animations of the simulations are found in Supplemental Information. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

natural frequency of the buckled beam (81.8 Hz in both equilibria of the model vs 81.3 Hz and 80.5 Hz in the two equilibria in the
experiments).

Unless otherwise noted, excitation is exerted at the point 𝑥̂𝑠 = 𝐿̂∕2.1, which is consistent with the experimental location. Finally,
light modal damping is introduced to the model; a damping ratio of 0.005 was chosen to match the decay observed in experimental
free vibration waveforms. This ratio is used for all modes for simplicity.

The contact stiffness parameter 𝑘̂𝑐 = 4𝑒8 N∕m3∕2 is calculated using the material properties of the beam and by approximating
the collision as a 5 mm diameter polylactic acid sphere on a semi-infinite steel domain to utilize the classical relation described by
Hertz [52].

The discretized model was implemented using a Tsitouras 5/4 Runge–Kutta method with automatic stiffness-based switching to
an Order 2/3 L-Stable Rosenbrock-W method from the DifferentialEquations.jl [53] package in the Julia programming language [54].

The number of modes used in this analysis (𝑁 = 32) was determined by a qualitative convergence study over the wide range of
excitation frequencies and amplitudes described in the results. For 𝑁 = 32, the natural frequencies of the first 10 dynamic modes
were found to be accurate to within 0.07% of the exact analytical values described by Nayfeh et al. [39] (see Appendix A). A single
mode model is used as comparison to the converged 32 DOF model.
6
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Fig. 5. A: A waveform with snapthrough at 𝛺 = 1.21, 𝑉 = 0.18. B: Snapshots the beam snapping through at the times indicated in panel A. C: First 3 buckling
modes. D: Modal amplitudes. During snapthrough (e.g. at points 2 and 3), the response is dominated by higher order modes (i.e. mode 2, 3, 4. . . ).

4. Results

4.1. Comparison of model and experimental waveforms

Over a wide range of excitation frequencies and amplitudes, we observe qualitative agreement between experimental and
simulated results, as shown by the representative waveforms in Fig. 4 for both experiment (left column) and simulation (right
column). The first row of the figure is a case of a low shaker velocity input, where the beam remains in the neighborhood of the
initial equilibrium, i.e., 𝑤𝑏(𝑥𝑠, 𝑡) ≈ −1 (intrawell response). In panels A & B, the response appears non-periodic and is of similar but
not identical amplitude. For the second row, the peak shaker velocity is increased, but the excitation frequency is kept constant.
Here, both panel C & D exhibit a transient interwell response, where the beam snaps between equilibria a finite number of times. In
these examples, only one snapthrough occurs. Often, these responses are characterized by decaying oscillations around the second
equilibrium, which we term transient interwell 2. However, it is also possible for a transient interwell response to return to an orbit
around the first equilibrium in a transient interwell 1 response. The third row (panels E & F) exhibits another example of transient
interwell responses, where multiple snapthroughs occur before the beam finds stability around an equilibrium. Again, this stability is
often characterized by convergence to the second equilibrium. While the experimental shaker’s motion exhibits minimal distortion,
a short transient response is present before steady state, which has the potential to significantly alter the observed response. For
example, the first cycle of the excitation waveform in panel C is larger than the steady state amplitude. This transient response,
combined with imperfections in the impact model, boundary conditions, etc., largely limit our agreement to a qualitative comparison.
Additionally, slight differences in the initial conditions and successive impacts have the potential to significantly influence the beam
response, particularly in regions of non-periodicity or near transitions between response types.

In experiment, the excitation amplitude and frequency range is limited. However, the system can be explored more thoroughly
using the computational model. In addition, we can more easily explore a critical defining feature of this continuous system: the
influence of higher order modes.

4.2. Effects of higher-order modes

Compared to a SDOF approximation, a continuous system exhibits several unique response characteristics. For example, there
often exists an anti-symmetric contribution that is prominent during snapthrough during both quasistatic [55] and dynamic
responses. In Fig. 5, a relatively large asymmetric component emerges during snapthrough when the first modal amplitude is near
0 (e.g. see points 2 and 3 in Fig. 5). This means that for any bistable beam that may snap through, inclusion of these higher-order
modes is crucial for the modeling of accurate system dynamics. Away from the unstable equilibrium, the first mode grows, quickly
dominating over the antisymmetric contributions.

In the special case where excitation is provided at the center of the beam, there is no direct excitation of the antisymmetric
modes. However, for off-center excitation, all modes are excited, either directly or via modal coupling. These modes then remain
critical for modeling accurate system dynamics for the next impact, as they directly influence contact force and timing and therefore
energy transfer.

Another effect of higher order modes is the emergence of high-frequency oscillations in the free-vibration portion of the response.
For displacement at the center of the beam, this effect is attributed to the odd modes, which are all dynamically coupled. For example,
7
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Fig. 6. Simulated and experimental responses across a wide range of excitation parameters. Response types determined following 200 cycles of excitation. Dot
overlay indicates experimental measurements. A: 1 mode model. B: 32 mode model response.

the inset of Fig. 5A displays high frequency oscillations during every cycle. This response is also apparent in the modal amplitudes
in Fig. 5D; the magnified response in panel A corresponds to contributions primarily from the first few modes in panel D.

One benefit of computational exploration is the ability to efficiently model and analyze large ranges of system parameters. For
this investigation, we increase the simulated parameter range beyond the experimental range, up to 𝛺 = 4 and 𝑉 = 0.65 as in Figs. 6
and 7. The resulting responses are categorized into interwell (blue and green) and intrawell (red) responses based on whether the
displacement at the center of the beam passes the unstable equilibrium (i.e. contains a zero crossing). To determine the difference
between continuous (green) and transient (blue) interwell responses, we look at the last quarter of the simulated duration (𝑛 = 50
cycles in Fig. 6, 𝑛 = 250 cycles in Fig. 7). If the number of zero crossings is greater than 𝑛∕5, the response is determined to be
continuous interwell. For Fig. 6, this translates to 10 zero crossings over the last 50 cycles of excitation; Fig. 7 requires 50 zero
crossings over the last 250 cycles of excitation. Two types of transient interwell responses were identified depending of the type of
response at the end of the simulation: transient interwell 1 (dark blue) and transient interwell 2 (light blue).

On this more global scale, as excitation frequency and amplitude are varied in Fig. 6, the differences in response type between
SDOF and 32 DOF become apparent. While both models are strikingly similar to the response of another impact-forced bistable
system [13], in Fig. 6, the 32 mode fine structure in panel B is more sharply tuned than the single mode model in panel A. The
notch near 𝛺 = 1.4, which has been linked to system resonance [13] in an SDOF model, shifts lower in the 32 DOF model to 𝛺 ≈ 1.2.
However, experiment shows a notch closer to 𝛺 = 1.4. This resonance effect can also be observed as frequency is swept for low
amplitude excitation in Appendix B. At high frequency, the velocity amplitude required to achieve snapthrough in a single mode
model remains relatively low while the 32 mode model threshold continues to rise gradually. Additionally, this threshold amplitude
is universally higher in the 32 mode model and is more consistent with experiment. Overall, the SDOF model predicts the frequencies
of experimental threshold minima, but the 32 mode model represents a much better estimation of the threshold amplitude across
all frequencies to within 1 experimental data point. As noted previously, approximations in the model (particularly the contact
model), inconsistent initial conditions, and a transient response in the experimental excitation likely contribute to these differences
in experimental responses.

Comparing Figs. 6 and 7, the system’s transient response exceeds 200 excitation cycles (and thus the experimental limits) for
many parameter combinations. In particular, the 32 mode system converges to entirely transient interwell 2 responses for high 𝑉 ∕𝛺
combinations, while transient interwell 1 responses all but disappear for the SDOF model. This extended transient response may also
extend beyond 1000 cycles, particularly for non-periodic simulations near the snapthrough threshold amplitude and nonperiodic
transient interwell 1 responses.

At very low frequency, the SDOF model of the beam is expected to snap through when the maximum shaker displacement goes
past the unstable equilibrium of the beam, i.e.,

𝑤𝑠,𝑚𝑎𝑥 > 0, (19)

which can be written as

𝑉 > −𝛺𝑤 (𝑥 , 0). (20)
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Fig. 7. Simulated and experimental responses after 1000 cycles of excitation. Dashed black lines indicate the SDOF threshold given by Eq. (21). A: 1 mode
model. B: 32 mode model. While most snapthrough events in the 32 mode model result in a transient interwell response, many continuous interwell responses
may be stable in the 1 mode model.

This inequality is used to define the SDOF quasi-static velocity threshold:

𝑉𝑄𝑆1(𝑥𝑠, 𝛺) = −𝛺𝑤𝑏(𝑥𝑠, 0) =
𝛺𝜙̂1(𝑥𝑠)
𝜙1(0.5)

(21)

At low frequencies, the boundary between intrawell and interwell responses in SDOF and 32 mode models seems to converge
to this threshold, which corresponds to the black dashed line in Fig. 7; however, at higher frequencies, interwell responses are
observed at velocity 𝑉 significantly lower than 𝑉𝑄𝑆1(𝑥𝑠, 𝛺), which means that the shaker does not need to moves past the unstable
equilibrium of the beam to cause snap-through.

4.3. Changing shaker location

Another distinctive difference between SDOF and 32 DOF approximations emerges when the excitation location is varied as
illustrated in Fig. 8A. Note that the shaker begins in contact with the beam, regardless of shaker position.

In the SDOF model, Eq. (21) predicts that the velocity threshold between intrawell and interwell response is proportional to
𝜙̂1(𝑥𝑠), which is observed not only at low frequency in Fig. 8B, but also at higher frequencies in panels D and F. At low frequency,
the threshold between intrawell and interwell responses closely follows the 𝑉 = 1×𝑉𝑄𝑆1(𝑥𝑠, 𝛺) line, which is the expected quasistatic
response for the SDOF system. At higher frequencies, the velocity amplitude threshold required to achieve snapthrough is also nearly
proportional to the 𝑉 = 𝑉𝑄𝑆1(𝑥𝑠, 𝛺) line, albeit at a much lower amplitude (𝑉 = 0.2×𝑉𝑄𝑆1(𝑥𝑠, 𝛺) in panel D and 𝑉 = 0.05×𝑉𝑄𝑆1(𝑥𝑠, 𝛺)
in panel F).

The threshold of the 32 mode model also follows the equation the 𝑉 = 1 × 𝑉𝑄𝑆1(𝑥𝑠, 𝛺) line trend in the case of the very low
frequency excitation (𝛺 = 0.05 in Fig. 8C). However, the 32 mode model significantly deviates from the trend expected for the SDOF
model at 𝛺 = 0.625 in panel E. The model exhibits a broad peak in the threshold for 𝑥𝑠 ≈ 0.4. Excitation of higher order modes
significantly increase the snap-through threshold for all shaker locations, with a more pronounced effect for 𝑥𝑠 ≈ 0.4 than for shaker
locations either the boundary or center of the beam. This effect is even more apparent at excitation frequencies above 𝛺 = 1, as in
panel G, where the 32 mode model threshold increases for a large range of shaker locations around 𝑥𝑠 ≈ 0.3. Experimental results
collected for 𝛺 = 1.625 demonstrate a similar increase in the threshold for 𝑥𝑠 ≈ 0.3 in manner roughly consistent with the 32 mode
model.

The number of modes 𝑁 used in our reduced order model was systematically varied from 1 to 32 to study the influence of 𝑁 on
the map of Fig. 8 at 𝛺 = 1.625. The results of this study, which are shown in Supplemental Video SI5, show a significant increase
in the threshold around 𝑥𝑠 ≈ 0.25 as soon as 𝑁 = 2 modes are considered. This location corresponds roughly to the location of the
antinode of the 2nd mode, 𝑥 ≈ 0.3. The rise in the threshold at this location arises because the shaker provides energy not only
to the first mode, which can directly leads to snap-through of the beam, but also to the 2nd mode, which is not associated with
snap-through. Introducing higher order progressively cause small changes in the map. However, the map obtained with 𝑁 = 16
modes is nearly identical to the map with 𝑁 = 32 modes, demonstrating near convergence of the results.

Further analysis of Fig. 8 provides a set of trade-offs that are present in selecting an excitation location for efficient snapthrough.
In a SDOF approximation, the threshold velocity amplitude required to achieve snapthrough is proportional to the 𝑉 = 𝑉 (𝑥 ,𝛺)
9
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Fig. 8. Major response types as shaker location is varied. A: Schematic showing possible initial configurations. The shaker starts in contact with the buckled
beam, regardless of 𝑥𝑠. B, D, & F: 1 mode. C, E, & G: 32 modes. For all panels, results are limited to 𝑉 < 2×𝑉𝑄𝑆1(𝑥𝑠 , 𝛺); the curve 𝑉 = 1×𝑉𝑄𝑆1(𝑥𝑠 , 𝛺) is plotted
in black dashes; vertical line at 𝑥𝑠 = 1∕2.1 indicates shaker location in prior figures. Panels B & C (𝛺 = 0.05) thresholds closely follow the 𝑉 = 1×𝑉𝑄𝑆1(𝑥𝑠 , 𝛺) line.
The boundary between intrawell and interwell responses in panels D & E (𝛺 = 0.625) are significantly below the 1 × 𝑉𝑄𝑆1 line. The threshold between intrawell
and interwell responses predicted by the 1 mode model is much lower than the 32 modes; furthermore, the 32 mode model threshold displays a broad notch
when 𝑥𝑠 is near the center of the beam. The 1 mode model follows the curve 𝑉 = 0.2 × 𝑉𝑄𝑆1(𝑥𝑠 , 𝛺), which is plotted in black dash–dot in D & E. Panels F & G
(𝛺 = 1.625) further highlight the model differences as the 1 mode model threshold lowers and follows the curve 𝑉 = 0.05×𝑉𝑄𝑆1(𝑥𝑠 , 𝛺), plotted in black dash–dot,
while the 32 mode model threshold increases for much of the beam and the notch near the center deepens. Dot overlay in panels F&G indicates experimental
measurements.

line in panels B, D, & F, regardless of excitation frequency. In the 32 mode model which is a better approximation of the continuous
system, the threshold curve follows a more complicated pattern. The threshold velocity reaches a broad maximum around 𝑥𝑠 = 0.3
to 0.4 depending on the excitation frequencies as shown in panels E, & G. This means that for velocity-constrained excitation, such
as those that occur within metamaterials [56] and sensors [1], excitation near either a boundary (𝑥𝑠 ≈ 0) or the center (𝑥𝑠 ≈ 0.5)
is most efficient, particularly at high frequency. Aside from snapthrough thresholds, there also exists a shift in response type as a
function of shaker location. For example, if a transient interwell response is desired, a shaker near the center of the beam has a
wide amplitude window available to achieve that response. Near a beam boundary, a shaker requires much finer amplitude control
to reliably achieve a transient interwell response.

5. Conclusions

In this work, the fundamental problem of a continuous bistable beam excited by impacts with a sinusoidally vibrating shaker
has been explored. Experimental and computational results at a low buckling level support the emergence of rich dynamics that are
highly dependent on excitation parameters. Additionally, we show that the inclusion of higher-order modes is critical for modeling
bistable beam dynamics near the unstable equilibrium.

We utilize a derivation of a dynamical model based on buckling modes to ensure symmetry of the bistable system. This
model is coupled with a Hertzian contact model to simulate a continuous bistable beam under a special form of transverse vibro-
impact excitation. Using this model, we uncover rich tunable dynamics with the potential for intrawell, transient interwell, and
continuous interwell responses dependent on excitation frequency, amplitude, and position. Additionally, experiments across a range
of amplitudes and frequencies qualitatively validate the model, particularly for estimation of the snapthrough threshold.

While a single mode model is adequate for approximating the frequencies of low-amplitude resonances, inclusion of higher-order
modes is crucial for estimating the exact threshold amplitude, and for high-frequency excitation.

Additionally, multiple modes are required to accurately model phenomena such as high frequency oscillations and the effects
of changing excitation location (the 2nd mode, which is antisymmetric, is especially critical). These effects can be used to tune the
system for efficient snapthrough by considering both displacement and force constraints of the excitation.

When excitation location is varied, the effect of multiple modes is further exemplified as changes in the excitation threshold.
For low excitation frequencies, threshold curves for the SDOF approximations at a fixed frequency resemble the first buckling mode
shape (albeit at different amplitudes). Near the center of the beam, a substantially different threshold shape emerges in the 32 mode
10
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Fig. A.9. Convergence of the natural frequencies of all modes <3 kHz. Dynamic modes are ordered by natural frequency.
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Appendix A. Eigenfrequency convergence

Since the analytical dynamic modes were not chosen as a basis, an additional investigation was used to confirm convergence to
the exact natural frequencies of the system. To find the natural frequencies around the equilibrium of the buckled beam, a solution
of the following form is assumed for the unforced version of Eq. (11):

𝛼⃗(𝑡) = 𝛼⃗(0) + 𝛿𝛼⃗𝑒𝑖𝜔𝑡 (A.1)

where 𝛿𝛼⃗ is a small perturbation from the buckled configuration of the beam; 𝛼⃗(0) = [𝛼1(0), 0,… , 0]𝑇 where 𝛼1(0) is the modal
amplitude of the 1st buckling mode at rest. Keeping only the linear terms in 𝛿𝛼⃗ result in the characteristic equation det(𝐾̂−𝜔2

𝑛𝑚̂) = 0
which is used to find the natural frequencies of the buckled beam. In the characteristic equation, 𝐾̂ is the diagonal matrix with the
following term on the diagonal:

𝐾̂11 = 𝐾̂0
1 + 3𝛾

[

𝛼1(0)
]2

𝐾̂𝑖𝑖 = 𝐾̂0
𝑖 + 2𝛾

[

𝛼1(0)
]2

for 𝑖 ≠ 1.
(A.2)

.
Limiting our convergence investigation to the first 10 dynamic modes (spanning all natural frequencies below 3 kHz), Fig. A.9

was obtained. Nayfeh et al.’s approach [39] to obtaining the exact analytic buckled beam natural frequencies serves as a theoretical
reference for the calculation of relative error.
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Fig. B.10. Maximum beam displacement over 1000 cycles at the location of excitation as a function of frequency. A: 1 mode approximation. B: 32 mode
approximation.

Appendix B. Resonance

As discussed in [13], the presence of notches in the threshold between intrawell and interwell responses (Fig. 6) are linked to
resonances of the system. Fig. B.10A illustrates this resonance for a 1 mode approximation at two excitation levels. At low excitation
levels, two maximum are observed at 𝛺 ≈ 1.8 and 𝛺 = 3.6. At moderate excitation levels, the displacement peak shifts left due to
the softening nonlinearity. For a single mode, another local maxima also emerges near 𝛺 = 3.5. In the 32 mode model in Fig. B.10B,
these local maxima emerge at lower frequencies.

Appendix C. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jsv.2024.118291.
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